

Streptococcus suis, un vecchio problema in un contesto mutato: evoluzione dell'approccio diagnostico.

Chiara F. Magistrali

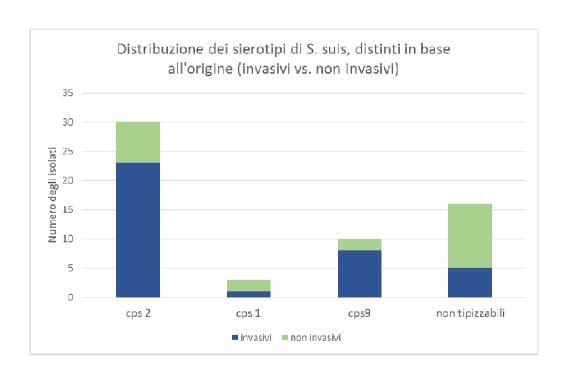
Area Ricerca e Sviluppo, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche, Perugia

Di cosa parleremo

- Streptococcus suis come agente patogeno
- Epidemiologia dell'infezione: cosa sappiamo
- Come è cambiato il contesto
- Un approccio diagnostico diverso?
- Come interpretare i risultati
- Altri sistemi di controllo sono possibili?

Si tratta di un normale abitante delle vie aeree superiori

Alcuni sierotipi sono patogeni, altri no

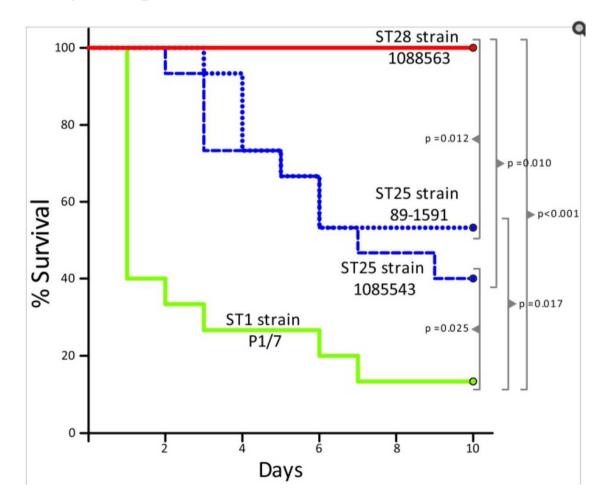

La distribuzione dei diversi sierotipi nelle forme di streptococcosi suina non è omogenea a livello mondiale

In particolare, la distribuzione del sierotipo 2 non è omogenea

Country	Serotype 2 from clinical cases
France	70%
Spain*	41%
Italy	62% (21% sero 9)
Netherlands/Belgium*	40%
UK	45%
Germany*	40%
Canada/USA	<20%

Courtesy of Prof. M. Gottschalk

Virulence-associated gene profiles in Streptococcus suis isolates, Italy, 2003-2007 (n=59)


Profile	Invasive	Non-invasive
cps2 isolates (n = 30)	23	7
mrp epfiless! ofs type 1 sly arcA	19	4
mrp epf ofs type 1 sly arcA	2*	1
mrp epf ofs type 15 sly arcA	1	
mrp ofs ^{tope 1} sly arcA	1	1
mrp ofs type 34 arcA	, a	1
cps1 isolates (n = 3)	1	2
mrps epfclase I ofs type I sly arcA	1	1
arcA	B1	1
cps9 isolates (n = 10)	8	2
mrp* ofs type 2 sly arcA	3	3
mrp ofs type 3b sly arcA	1	1
mrp sly arcA	1	1
mrp* sly arcA	2	
sly arcA	1	*
aNT isolates (n = 16)	5	11
mrp epf ⁹¹⁵ ofs ^{type 2} sly arcA	1	*
mrp ofs tipe in sly arcA	ħ	2
epf ⁹¹⁵ sly arcA	8	1
mrp sly arcA	1	120
mrp* arcA	P.	2
sly arcA	3	2
arcA		4

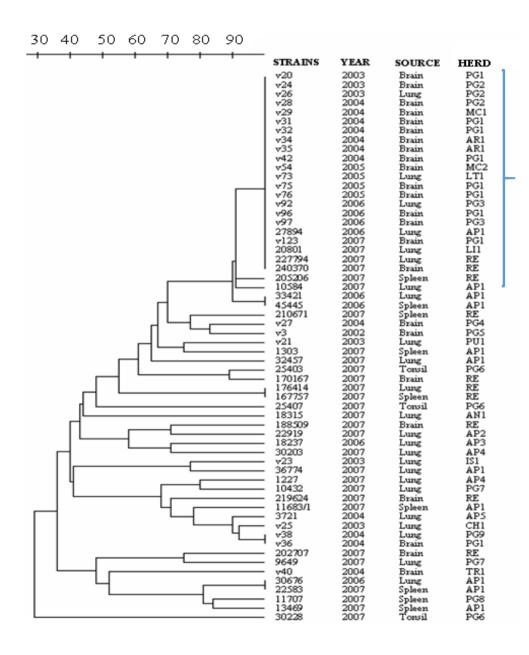
^{*} NT: non-typeable (neither cps1, nor 2, 7 or 9). * Human isolates

Anche all'interno del sierotipo 2 non tutti i ceppi hanno la stessa patogenicità

La tipizzazione molecolare permette la distinzione di sequence type più o meno patogeni

Fittipaldi, Emerg Infect Dis 2011

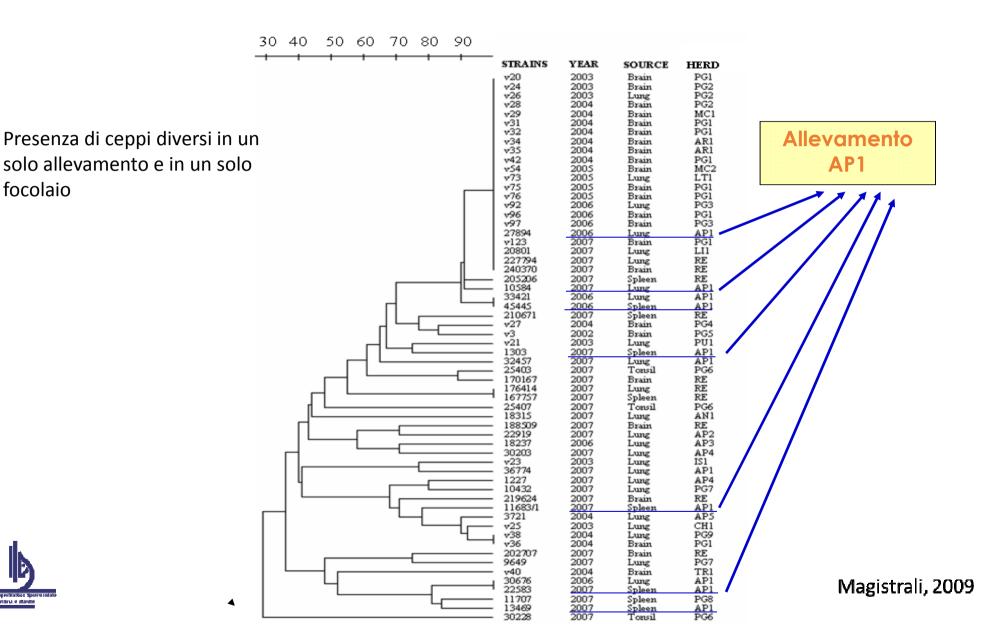
Association of Streptococcus suis serotype 2 STs and commonly used virulence markers in isolates from North America†


Presence of factor-encoding gene

					mrpv	/ariant‡				Phen	otype	
ST	No. strains	sly	mrp	mrps	mrp*	mrp**	mrp***	ND	<i>epf</i>	Hemolysis§	MRP¶	EF
1	11	11	9	0	0	0	0	2	11	11	9	11
25	36	0	0	1	1	8	23	3	0	0	0	0
28	49	0	42	6	1	0	0	0	3	0	49	0

I Sequence type patogeni sono associati a fattori di virulenza riconosciuti

Fittipaldi, Emerg Infect Dis 2011



Presenza di un clone dominante

epf-/mrp+/cps2+/sly+

Magistrali, 2009

focolaio

Si tratta di un patogeno primario o di un agente di irruzione secondaria?

Serie di fattori predisponenti riconosciuti:

Sovraffollamento

Ventilazione inadeguata, elevata umidità, biosicurezza

Rimescolamenti di animali

Variazioni di temperatura nel corso della giornata

Polverosità ambientale e livelli di ammoniaca

Procedure traumatiche (artrite)

Infezioni concomitanti

Streptococcus suis è un agente di polmonite nel suino?

Vet Pathol 37:143-152 (2000)

Non è un agente patogeno primario
Viene isolato nel 20% di polmoni sani: non utilizzare il polmone come organo per l'isolamento in caso di setticemia!
Può essere associato ad altre

infezioni: PRRSV e SIV

Pathogenesis of Porcine Reproductive and Respiratory Syndrome Virus-induced Increase in Susceptibility to Streptococcus suis Infection

R. THANAWONGNUWECH, G. B. BROWN, P. G. HALBUR, J. A. ROTH, R. L. ROYER, AND B. J. THACKER

Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand (RT); and Departments of Veterinary Microbiology and Preventive Medicine (GBB, JAR) and Veterinary Diagnostic and Production Animal Medicine (PGH, RLR, BJT), College of Veterinary Medicine, Iowa State University, Ames, IA

Abstract. Eighty 3-week-old crossbred pigs were randomly assigned to six groups (13–14 pigs/group). Group 1 pigs served as uninoculated controls, group 2 pigs were inoculated intranasally (IN) with Streptococcus suis serotype 2, group 3 pigs were inoculated IN with a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine, group 4 pigs were inoculated IN with the same vaccine and with S. suis, group 5 pigs were inoculated IN with VR-2385 (a high-virulence strain of PRRSV), and group 6 pigs were inoculated IN with VR-2385 and S. suis. Pigs exposed to both PRRSV and S. suis were inoculated with PRRSV 7 days prior to S. suis inoculation. The pigs were 26 days old when inoculated with S. suis. Respiratory disease

Dynamic Virus-Bacterium Interactions in a Porcine Precision-Cut Lung Slice Coinfection Model: Swine Influenza Virus Paves the Way for *Streptococcus suis* Infection in a Two-Step Process

F. Meng, N. H. Wu, A. Nerlich, K. G. Herrler, P. Valentin-Weigand, M. Seitzb

Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany's; Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany's

Swine influenza virus (SIV) and Streptococcus suis are common pathogens of the respiratory tract in pigs, with both being associated with pneumonia. The interactions of both pathogens and their contribution to copathogenesis are only poorly understood. In the present study, we established a porcine precision-cut lung slice (PCLS) coinfection model and analyzed the effects of a primary SIV infection on secondary infection by S. suis at different time points. We found that SIV promoted adherence, colonization, and invasion of S. suis in a two-step process. First, in the initial stages, these effects were dependent on bacterial encapsulation, as shown by selective adherence of encapsulated, but not unencapsulated, S. suis to SIV-infected cells. Second, at a later stage of infection, SIV promoted S. suis adherence and invasion of deeper tissues by damaging ciliated epithelial cells. This effect was seen with a highly virulent SIV subtype H3N2 strain but not with a low-virulence subtype H1N1 strain, and it was independent of the bacterial capsule, since an unencapsulated S. suis mutant behaved in a way similar to that of the encapsulated wild-type strain. In conclusion, the PCLS coinfection model established here revealed novel insights into the dynamic interactions between SIV and S. suis during infection of the respiratory tract. It showed that at least two different mechanisms contribute to the beneficial effects of SIV for S. suis, including capsule-mediated bacterial attachment to SIV-infected cells and capsule-independent effects involving virus-mediated damage of ciliated epithelial cells.

FIGURE

Similarity index of the 59 Streptococcus suis isolates, Italy, 2003-2007

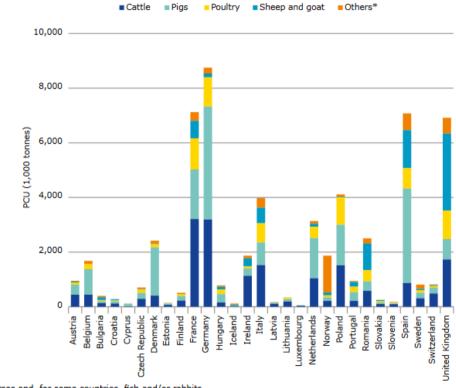
* SIMILARITY	STRAIN	YEAR	SOURCE	PULSOTYPE		VIRUI	LENCE GEN	OTYPE		RESISTANCE (GENOTYPE
50 70 90		2007	Brain	la .	ops2	mp	spyller 1	do	offenal	2e1(O)	enn(B)
	v24 (PG/2)	2003	Brain	:	100						0.000
		2003	Lung			2				2	27
	v28 (PG/2)	2004	Brain			2					
	v29 (MCA) v31 (PG/1)	2004	Brain Brain			765	100		+		
	v32 (PG/1)	2004	Brain		*		0	*	**		
	v34 (AR)	2004	Brain			60			. 11		
	v35 (AR)	2004	Brain						**		
	v42 (PG/1)	2004	Brain	*			100				
	v54 (MC/2)	2005	Brain			11.	0		40		
	v73 (LT)	2005	Spleen				000		**		
	₩75 (PG/1)	2005	Brain		*			*		•	200
	₩ v76 (PG/1)	2005	Brain			2	100				
	v92 (PG/3)	2006	Lung		100	200			144	<u> </u>	12
	v96 (PG/1)	2006	Brain	1	330	20	353	100		2	10
	₩97 (PG/3)	2006	Brain	(I)		2			1	0	
		2006 2007	Lung		100			10			
	20801 (LI)	2007	Spleen				10		40		
-	227794 (RE)	2007	Lung				0.0		++	*	
	240370 (RE)	2007	Spleen	•		0.7				*	
	205206 (RE)	2007	Spleen	1ь	cps2	mmp.	epfilm 1	284	affinel	tet(O)	em(B)
	33421 (AP/I)	2006	Lung	lc	opsi	margo		217	oficeel	202(W)	
	45445 (AP/I)	2006	Spleen	le	epsl	212329	eppear	2 (7 2 (7 2 (7	ofwest	tet(W)	200
4	10384 (AP/I)	2007 2007	CSF	ld ld	ops2	212122	epf	213	oformal	tet(W) tet(W)	em(B)
	39CA-1 (CA) 210671 (RE)	2007	Spleen	le		mange	epf		Lyona	24 t(O)	enn(D)
	S ₂ UD (UD)	2007	CSF	lf	ops2	2022gs 2022gs	apf	21/2	ofmets.	wa(W)	ann(B)
	v27 (PG/4)	2004	Brain	lg	cps9	112122 A	-50	ile	Ly.	tet (O)	em(B)
	v3 (PG/5)	2003	Brain	1h	ops2	202727	opf	46	ofernal	242(0)	emn(B)
	v21 (PU)	2003	Lung	2a	cps9	mm	-	317	20 x 200 x 101	zez(O)	emm(B)
-	1303 (APA)	2007	Spleen	2ь	opd9	702729 4		239		261 (ONVISQIO)	ann(B)
	32457 (AP/1)	2007	Lung	3	NT	500	- 1	-	32	tet(O/W/32/O)	em(B)
	170167 (RE)	2007	Brain	4	NT	200		2.19	6 3 550000	162(M)	Suppose.
	176414 (RE)	2007	Lung	5	cps2	manp	-	257	afirmet	tet(0)	8
	167757 (RE)	2007	Splean	3	ops2	702727	2.0	267	ofirmel	ME(O)	
	188509 (RE) 22919 (AP/2)	2007 2007	Brain Lung	6a 6b	NT NT	mm *		249	ofunet	tet(O) tet(O/W/32/O)	unknown em(B)
	18237 (AP/3)	2006	Lung	7a	NT	252332 A.	35	250	137	148(O/W/32/O)	em(B)
_			Lung	76	NT	mp*		-0		tet(O/W/32/O)	
	30203 (AP/4) +23 (IS)	2007 2003	Lung	84	2001	med.	-		2	tet(O)	emm(B) emm(B)
	36774 (AP/I)	2007	Lung	86	NT	2	12		34	wt(0)	emm(B)
	1227 (APA)	2007	Lung	9a		mm	-	26	offensie	268(0)	-
-	10432 (PG/6)	2007	Lung	96	NT NT	800	ap#15	30	200	ME(0)	em(B)
	219624 (RE)	2007	Brain	10a	NT	manp	-00	217	UT1270777		
1	11683 (ÁP/I)	2007	Spleen	106	cps9	many *	-	269	of server	tet(O/W/32/O)	emn(B)
	3721 (AP/5)	2004	Lung	10a	MT	22222		219	offerent	225(OM/32/O)	em(B)
	v25 (CH)	2003	Lung	10d	NT	יקרניון		257	office b	264(O)	em(B)
1 1 1	v38 (PG/8)	2004	Lung	10a	ap:19	717.727		2.0	of in the		
	936 (PG/1) 18315 (AN)	2004 2007	Brain Lung	10e 11	CPS9 NT	772725	49	200	ofivers	te#(OfW/32/0)	emn(B)
	202707 (RE)	2007	Brain	12a		mp+	6	219	ofienet	88(0)	em(B)
	9649 (PG/6)	2007	Lung	126	cps9 NT	esege.	12	467	- Age	ma(20)	em(n)
4	v40 (TR)	2004	Brain	13	NT	mm	sp#15	sty	offensi	268(O)/268(M)	emm(B)
	22583 (AP/I)	2007	Spleen	14a	ops9			aly	300	MI(O)	emn(B)
	30676 (AP/I)	2006	Lung	14b	NT		S.	1/2	39	2000	
	11707 (PG/7)	2007	Spleen	14e	NT		5.	260		tet(O)	unknown
	13469 (AP/I)	2007	Spleen	14d	NT	2	84	227	100	45787	9

Princivalli, Eurosurvelliance, 2011

For each isolate, the year and the source of isolation and the virulence and resistance genotypes are shown. Pulsed-field gel electrophoresis pulsotypes sharing >70% similarity were grouped into clusters (gray).

Jinknown: neither erm(A) nor erm(B) nor mef(A).

SCCA-1 and SSUD are the two human isolates


Forte preoccupazione per l'aumento dell'antibioticoresistenza

Pressione sul settore zootecnico per la riduzione dell'impiego degli antibiotici

Necessità di giustificare l'impiego di antimicrobici

Monitoraggio dell'impiego di antibiotici in zootecnia

Figure 2. The denominator (PCU) and its distribution by the food-producing animal species, including horses, (PCU = 1 kg), by country, in 2014

^{*} Includes horses and, for some countries, fish and/or rabbits.

Figure 26. Spatial distribution of sales of penicillins for food-producing animals, in mg/PCU, by country, for 2014

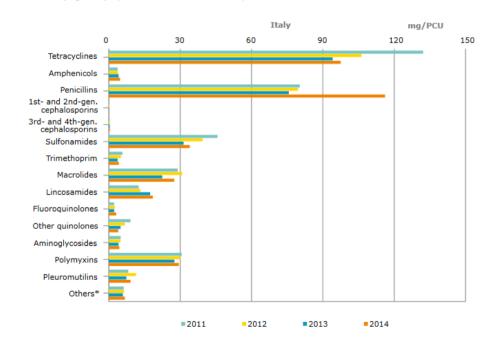
Forte preoccupazione per l'aumento dell'antibioticoresistenza

Pressione sul settore zootecnico per la riduzione dell'impiego degli antibiotici

Necessità di giustificare l'impiego di antimicrobici

Monitoraggio dell'impiego di antibiotici in zootecnia

Forte preoccupazione per l'aumento dell'antibiotico-resistenza


Pressione sul settore zootecnico per la riduzione dell'impiego degli antibiotici

Necessità di giustificare l'impiego di antimicrobici

Monitoraggio dell'impiego di antibiotici in zootecnia

Italy

Figure 92. Sales (mg/PCU) by antimicrobial class in Italy, from 2011 to 2014

Progetto pilota della Regione Umbria in collaborazione con IZSUM- Centro di Farmacovigilanza regione Umbria

Calcolo DDD

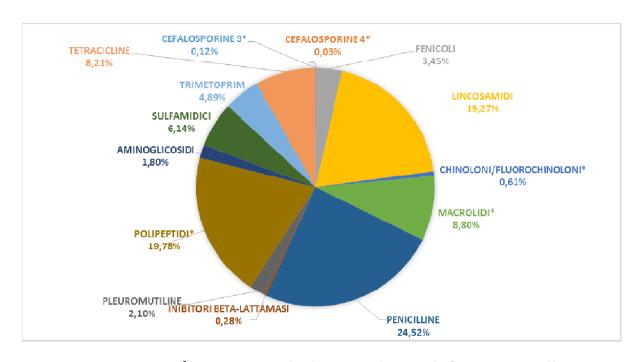
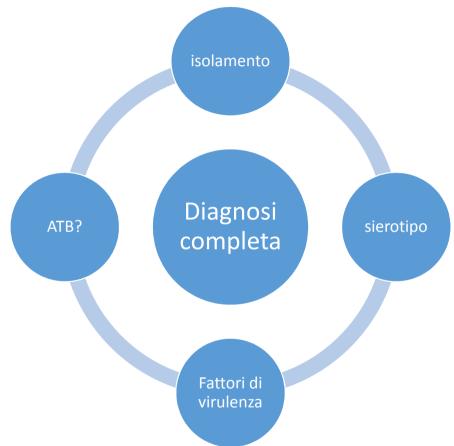


Figura 1: % DDD/1000 animali-die per classe di farmaco nella specie suina- anno 2014



Centro di farmacovigilanza della Regione Umbria

Streptococcus suis: quali elementi per indirizzare la diagnosi

Prelievo:

Esame necroscopico di 2-3 animali, da 2 gg diversi Non sottoposti a trattamento No tamponi tonsillari e campioni delle vie aeree in generale

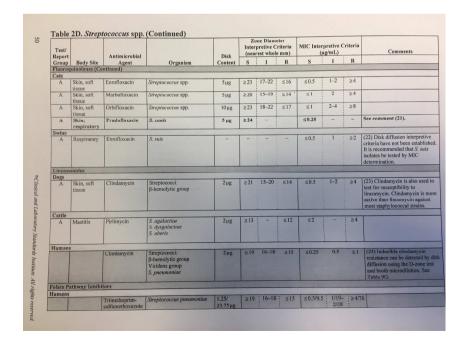
Streptococcus suis: quali elementi per leggere il referto diagnostico

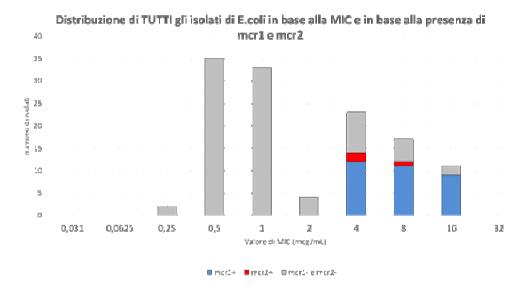
Streptococcus suis presente in sedi indicative In un focolaio, un solo sierotipo o più sierotipi? Se sierotipo 2: sono presenti anche i geni codificanti per le tossine? Antibiogramma e/o MIC

Streptococcus suis: quali elementi per leggere il referto di sensibilità agli antimicrobici

Che tipo di accertamento: MIC vs. Kirby-Bauer o antibiogramma

Che tipo di molecole possiamo inserire e come leggerle: le molecole equivalenti


Es. ampicillina-amoxicillina- amoxicillina+acido clavulanico



Streptococcus suis: quali elementi per leggere il referto di sensibilità agli antimicrobici

I dati di sensibilità agli antimicrobici è fortemente limitata dall'assenza di breakpoint clinici relativi alla specie e al sito di isolamento

Streptococcus suis: esiste un problema di resistenza di S. suis in Italia?

Dati relativi alla sensibilità agli antimicrobici: isolati collezionati nel periodo 2003-2007, n=63 (Barocci et al., 2008)

	<0.12	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Penicillina	88%	1.5%	4.8%	1.5%	-	-	-	3.2%				
Ampicillina			95.2%	1.5%		3.2%						
Enrofloxacin	1.5%		15.9%	61.9%	15.9%	4.8%						
Florfenicolo					47.6%	52.4%						
Clindamicina			12.7%		1.5%				84.1%			
Tetraciclina				7.9%			7.9%	84.1%				
Tilosina				15.9%						84.1%		
Tilmicosina							15.9%					84.1%

Streptococcus suis: esiste un problema di resistenza di S. suis in Italia?

Antibiotic	S strains (%)	R strains (%)
Amoxicillin	35 (97.2)	1 (2.8)
Amoxicillin-clavulanic acid	35 (97.2)	1 (2.8)
Ampicillin	36 (100.0)	0 (0.0)
Ceftiofur	34 (94.4)	2 (5.6)
Enrofloxacin	32 (88.9)	4 (11.1)
Erythromycin	22 (61.1)	14 (38.9)
Penicillin G	35 (97.2)	1 (2.8)
Tetracycline	4 (11.1)	32 (88.9)
Trimethoprim-sulfamethoxazole	30 (83.3)	6 (16.7)

^{*} Study described in Table 1. Streptococcus suis isolates (n = 36) were tested for susceptibility to antimicrobial agents. No isolates demonstrated intermediate resistance. S = susceptible; R = resistant.

Streptococcus suis: esiste un problema di resistenza di S. suis?

Table 1MIC distribution (%) for *Streptococcus suis* isolates from April 2013 till June 2015.

	Streptoco	occus suis	(n=1163)	1													
	MIC val	ues (µg/m	L)														
Antimicrobial agent	0.03125	0.0625	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	>102
Amoxicillin/clavulanic acid ^b	9:50			99.4	0.2	0.2	0.1	0.1	0.0	0.0	0.0				100		
Ampicillin		97.9	0.9	0.5	0.2	0.2	0.1	0.2	0.0	0.0	0.0						
Cefepime					98.5	0.7	0.7	0.0	0.0	0.0	0.1						
Ceftiofur				95.6	2.1	0.3	1.2	0.3	0.3	0.2							
Clindamycin				50.7	1.2	0.8	0.6	1.3	45.4								
Enrofloxacin				73.6	25.0	0.8	0.0	0.3	0.3								
Erythromycin			51.1	0.7	0.3	0.3	0.9	0.9	2.8	43.0							
Florfenicol							99.5	0.4	0.1	0.0							
Neomycin								9.5	38.5	38.3	13.7						
Oxacillin				97.6	1.9	0.2	0.1	0.1	0.1								
Penicillin		95.2	1.9	1.7	0.7	0.3	0.2	0.0	0.0	0.0	0.0						
Sulfamethoxazole						"				16.7	0.9	1.6	0.8	0.4	1.4	78.2	
Trimethoprim/sulfamethoxazole ^c	21.5	22.5	27.2	16.2	4.6	3.4	1.6	0.9	2.1								
Tetracycline				3.1	10.2	8.3	2.7	1.5	6.8	18.9	48.5						

Streptococcus suis: dati epidemiologici

Trasmissione della malattia: cosa sappiamo

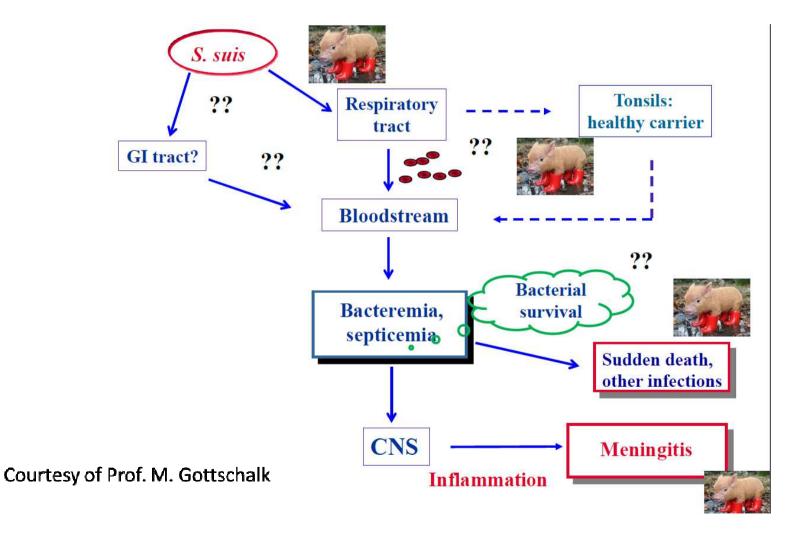
Presenza di carrier

Ruolo delle scrofe

Trasmissione verticale e orizzontale

Trasmissione indiretta:

Altri animali, persone,

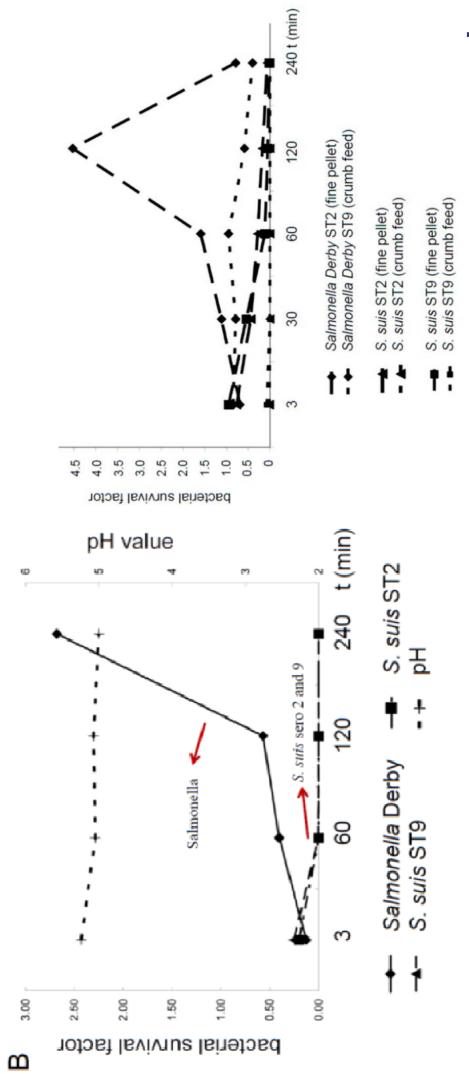

Via aerogena a lunga distanza

Insetti: mosche

Streptococcus suis: patogenesi

Streptococcus suis: possibile la trasmissione attraverso il tratto gastro-intestinale?

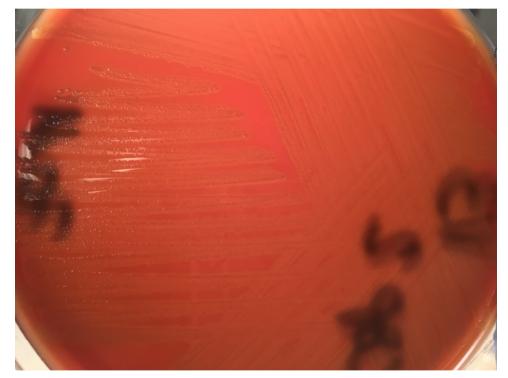
Elementi a favore:


Isolamento di S. suis dai linfonodi meseraici
Periodo di infezione: anoressia temporanea
Ipossia conseguente alla improvvisa ingestione di
elevate quantità di alimento
Turbe flora intestinale
Infiammazione, stress
Aumento della permeabilità intestinale

Elementi contro:

Sopravvivenza di S. suis nel contenuto gastrico di suinetti

Stipiti virulenti di Strep suis somministrati al suinetto con l'alimento


Courtesy of Prof. M. Gottschalk

Streptococcus suis: possibile la trasmissione attraverso il tratto gastro-intestinale?

Infezione sperimentale con il Sierotipo 2 e 9 a 10 miliardi di UFC per via endonasale non ha riprodotto la malattia né l'isolamento dai linfonodi.

Effetto indiretto?

La protezione non si realizza tra diversi sierotipi (no cross-protezione tra 2 e 9).

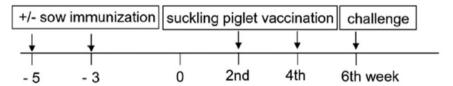
Sono disponibili solo vaccini stabulogeni

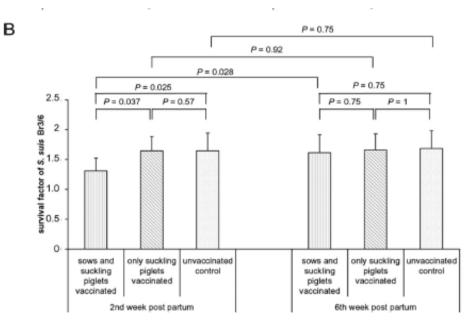
La presenza di anticorpi opsonizzanti correlata con la protezione

Sono disponibili diversi protocolli vaccinali: vaccinazione delle scrofe, dei suinetti o di entrambi

Valutazione attraverso anticorpi opsonizzanti

Andamento anticorpi opsonizzanti in allevamento endemicamente infetto

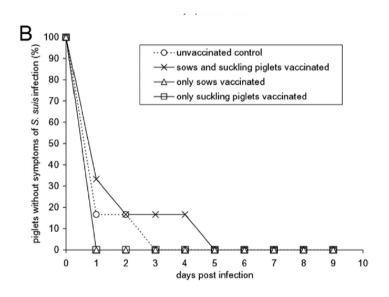

Courtesy of Prof. M. Gottschalk



Sono disponibili diversi protocolli vaccinali: vaccinazione delle scrofe, dei suinetti o di entrambi

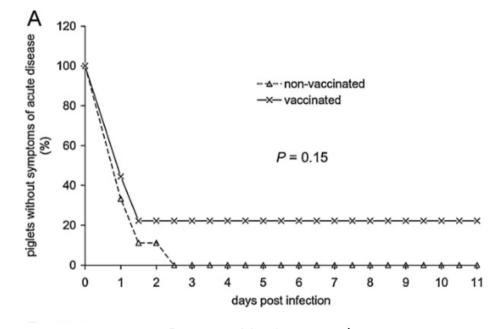
Valutazione attraverso anticorpi opsonizzanti


1st experiment:



Baums, Clin Vaccin Immunol, 2010

Baums, Clin Vaccin Immunol, 2010



Streptococcus suis profilassi indiretta: per il sierotipo 9?

La maggior parte degli studi è stata condotta con ST 2

Vaccini inattivati con sierotipo 9 meno efficaci nel determinare una protezione

Emergenza del sierotipo 9 in Europa?

Buttner, Vet Immunol Immunopath, 2012

Grazie per l'attenzione!

